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We briefly analyze two partial order relations that are usually introduced in 
quantum logic by making use of the concepts of "yes-no experiment" and of 
"preparation" as fundamental. We show that two distinct posets E and E can 
be defined, the latter being identifiable with the lattice of quantum logic. We 
consider the poser $ and find that it contains a subset E o which can easily be 
orthocomplemented. These results are used, together with suitable assumptions, 
in order to show that an orthocomplementation in E can be deduced by the 
orthocomplementation defined in E0, and also to give a rule to find the 
orthocomplement of any dement of E. 

1. I N T R O D U C T I O N  

People  work ing  on q u a n t u m  logic have for  a long t ime been  ac-  
cus tomed  to th ink  that  a t  least  two meaningfu l  par t ia l  o rde r  re la t ions  can  
be  given in the set E of p ropos i t ions  def ined  for  a given phys ica l  System, 
viz., the one  used b y  M a c k e y  (1963), 

for  any  a, b E  E, a < b c : ~ a ( a ) < a ( b )  (1.1) 

[where a ( a )  is the p r o b a b i l i t y  of  the p ropos i t ion  a when the system is in the  
state a] a n d  the one  used  b y  Jauch  (1968) a n d  Pi ron  (1976), which  we 
express  here in the equiva lent  fo rm (Bel t ramet t i  and  Cassinell i ,  1979) 

for  any  a , b  ~ E, a ~ b c = > S l ( a ) C _ S l ( b )  (1.2) 

where  S l ( a  ) [respectively,  Sl (b)]  is the set of the  states which m a k e  a 
(respectively,  b) cer ta in ly  true. 
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Hence, the problem arises immediately whether these partial order 
relations coincide in E. Making suitable assumptions it can be proved that 
they do (Pool, 1968a); alternatively, one can a priori assume that ~ and < 
coincide (Beltrametti and Cassinelli, 1976). Nevertheless, this coincidence 
can be questioned, for instance by making use of Mielnik's analysis and 
examples (Mielnik, 1976). Moreover, Mielnik's analysis throws further 
doubts on the orthocomplementation in E. 

To overcome these difficulties one can observe that Mielnik's objec- 
tions refer to an interpretation of the propositions of E as equivalence 
classes of all the possible yes-no  experiments, and that they actually make 
it evident that the axioms of quantum logic, when interpreted in terms of 
properties of the yes-no  experiments contained in the classes that are the 
elements of E, imply that only a limited number of yes-no experiments in 
any equivalence class can be taken as representative of the corresponding 
proposition; thus, one can say, the experiments proposed by Mielnlk do 
not belong to this privileged representative set, and their "anomalous" 
properties must not be considered. 

However, this point of view leaves us disappointed, essentially because 
it does not give an explicit rule to single out the questions permitted in the 
set of all the physically conceivable yes-no experiments (one can say that 
they must correspond to ideal, pure, first kind measurement; however, it is 
not easy to verify if a given yes-no experiment satisfies this condition); 
moreover, we would prefer an approach that does not eliminate a large set 
of experimental devices right from the beginning. In the present work, we 
set up a possible basis for such an approach; we show that the relations < 
and ~ give rise to different equivalence classes in the set of all the yes-no 
experiments and obtain two partially ordered sets that we call E and E, 
this last being identifiable with the lattice of quantum logic. Then, some 
immediate properties of E are discussed (in particular, the existence in E 
of an orthocomplemented subset E0) and some axioms are proposed which 
allow us to transfer properties of E (in particular, orthocomplementation) 
into properties of E. In our opinion this permits a clearer interpretation of 
some of the axioms which are usually stated in quantum logic and gives an 
explicit rule to pin-point the experiments which can be considered repre- 
sentative of a given proposition of E. Furthermore, the whole discussion 
turns our attention to a new structure, the one we call E 0 in Section 3, and 
one might wonder if it has an independent physical or logical meaning (we 
do not want to dwell upon this point here). 

2. EQUIVALENCE AND ORDER RELATIONS 

Following Beltrametti and Cassinelh (1979), we shall consider the 
concepts of physical system, yes-no experiment [which we also call "'ques- 
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tion'" according to Piron (1976)], and preparation of a given physical system 
as the primitive objects of our theory. [Instead of questions we could take 
observables as primitive objects. We have chosen questions in order to 
avoid unnecessary complications in this work; however these choices are 
substantially equivalent (Maczynski, 1972; Beltrametti and Cassinelli, 
1979).] 

We will denote the set of all the questions by E and the set of all the 
preparations by H. We assume that it is physically meaningful to assign a 
probability to the yes outcome for any yes -no  experiment e E E which is 
performed on the system prepared according to a given ~rEH (this is 
actually a restriction on E),  and denote it by ~r(e). 

For  any ,/71, 'TrEEl-[ we will say that ~r I has the relation --= to 7/ 2 
whenever ~q(e)= ~rE(e ) for any e ~ E .  The binary relation ~ is obviously 
an equivalence relation in II. We will call the equivalence classes [~r]_, 
~r ~ H, states of the system, and denote the quotient set r I / _  by S. For  any 
o~ E S we set a(e) = rz(e), with ~r ~ or, and say that a(e) is the probability of 
the yes outcome for the yes -no  experiment e when the system is in the 
state a. Then, we introduce a binary relation < in E by setting 

for any el, e 2 �9 E, e, < e2<=>for any a ~ S, a(el) < a(e2) (2.1) 

This relation is reflexive and transitive; moreover, it is easy to imagine 
some yes -no  experiments el,e2, such that o~(el)= a(e2) with elq=e2, so that 
< is not antisymmetric. In order to obtain a partially ordered set, we 
introduce a further binary relation in E by setting 

for any el, e 2 E E, e 1 ~e2<=~for any a E S, a(el) ~ a(e2) (2.2) 

(hence el~e2c:>e I <e  2 and e 2 <e  0. This is an equivalence relation in E; 
thus, we can consider the quotient set E = E / ~ .  Let x ~ E,  e E x; we put, 
for any a E S, a(x)  = a(e). Hence, a binary relation, which we again denote 
by <,  can be introduced in E by setting 

for any Xl, x 2 E E ,  x 1 < x2c=ffor any a ~ S, a(Xl) < a(x2) (2.3) 

Now, < is obviously a partial order relation in E .  
Our procedure can be repeated with a different kind of binary relation 

in E. More precisely, for any e E E ,  we put S I ( e ) = ( a E S :  a ( e ) =  1} (this 
set will be called the certainly yes domain of e) and introduce the binary 
relation < in E by setting 

for any e,, e 2 E E, e I < e2c=~S,(e,) C_ S,(e2) (2.4) 

[Here C_ denotes set inclusion. We recall that the set of states of S, hence 
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of S~(e), can be divided into pure states and mixtures; both kinds of states 
actually exist in classical and in quantum mechanics. However, in quan- 
tum logic ~< could also be defined by making reference to pure states only; 
this would not alter the essential features of our argument.] Again, this 
relation is reflexive and transitive but not antisymmetric; as before, we can 
define another binary relation in E by setting 

for any el,e2~E, e~e2c:~Sl(el) = Sl(e2) (2.5) 

(hence el~e2c=>el<e2 and e2<e 0. This is an equivalence relation; thus, 
we consider the quotient set E = E / ~  and for any a E E we put Sl(a)= 
Sl(e), with e E a. Hence a binary relation, which we again denote by < ,  
can be introduced in E by setting 

for any a,, a 2, a I ~ a2c=~Sl(a,) C_ S,(a2) (2.6) 

This is obviously a partial order relation in E [we remember (Beltra- 
metti and Cassinelli, 1979; Pool, 1968a) that the order relation (2.6) 
rephrases the order relation introduced by Jauch (1968), Piron (1976), and 
others by making use of the concept of preparation as a primitive concept] 
and say that these propositions also form a partially ordered set. 

Now, the problem arises whether the elements of E coincide with the 
elements of E. There are examples of yes-no experiments proposed by 
Mielnik (1976) which show that it is possible to imagine some yes-no 
experiments el,e 2 ~ E such that e ~ e  2 but e l s e  2. Thus, we conclude that 
the sets E and E have different elements, so that it is meaningless to ask 
whether the order relations < and < coincide. However, our analysis can 
be deepened further. 

Indeed, we observe that 

for any el,e2EE, e 1 <e2~et~--<e2 (2.7) 

hence e~e2~e l .~e2 .  Thus, for any e ~ E ,  [e] C_[e]~. [Equivalently, de- 
noting the partial order relation usually introduced in the set ~ ( E )  of the 
equivalence relations in E again by c_, we can say that ~ c_ ~.] Then, the 
quotient relation ~ = ~-- can be introduced in E =E/,-~ by setting 

(Bourbaki, 1966) 

foranyx,=[e,] @E and x2--[e2] EE 

X 1 ~ X2<=~ [ e, ]~. = [ e 2 ] ~  (2.8) 
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This is again an equivalence relation, so that the quotient set 
E ' = E / ~  can be considered. Let e ~ E ,  x = [ e ] _ ,  a ' = [ x ] ~ ;  then, obvi- 
ously, the set of all the ye s -no  experiments belonging to the elements 
y E E such that y E a'  is [e]~, so that the mapping 

@:a'=[x]~--~a=[e]~ 

is bijective. Hence, the sets E' and E can be identified; we will make this 
identification from now on, so that we can say that every element of E is 
an equivalence class in the set E .  

Furthermore, we introduce a new binary relation in ~, which we again 
denote by <,  by setting 

for any al ,a  2 E 

a 1 < a2<:=>two questions e 1 E al, e 2 E a 2 exist such that e 1 <e 2 (2.9) 

(hence a I < a 2 ~ a l  <a2). 
This relation is reflexive, transitive, and antisymmetric [because of 

(2.7) and the antisymmetry of < in E]; thus, E is partially ordered by < 
and the question arises whether < and < coincide in E; since it seems 
that no purely logical reason exists to decide in either way, it is possible to 
introduce this coincidence as a new assumption of the theory. We refer to 
Beltrametti and Cassinelli (1976) for such an assumption, only noticing 
that the Axiom 5 introduced in Section 2.1 of this reference must, in our 
opinion, be reinterpreted in the sense discussed above. 

3. F IRST INVESTIGATION OF E 

We assume that a "certainly true" and a "certainly false" experiment, 
which we denote by e I and by e 0, respectively, exist in E (these are 
idealized experiments whose meaning is obvious) and denote the corre- 
sponding elements of E by I and 0, respectively; thus, I and 0 are the 
greatest and the least elements of E .  

For any e E E, we consider the experiment e • obtained from e by 
interchanging the yes and no outcomes. 

It is apparent that 

for any a E  S, a ( e X ) = l - t ~ ( e )  (3.1) 

and that 

for any el,e2 ~ E, el~e2c=~el-L~e2 -1- (3.2) 
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Thus, we can assume tha t, for any x E E ,  an element x •  E exists such 
that ct(x • = 1 - a(x) for any ct E S. Moreover, the mapping 7/: x E E ~ x  • 
E E is such that 

for any x E E ,  x •177 = x  (3.3) 

for any x,y E E,  x<y~yi<<.x • (3.4) 

However, x-L is not, in general, a complement  of x, as simple examples can 
easily show. For instance, let e be a semitransparent mirror and let 
x = [ e L ;  then, x • = x  and the join x k / x •  exists in E and does not 
coincide with I. 

Because of the outstanding importance of the orthocomplementat ion 
in quantum logic, we wonder if ~/ can become an orthocomplementat ion 
by eliminating a proper class of annoying experiments from E. Indeed, the 
way of doing this exists and is very simple. Let us consider the subset 
E 0 C_ E such that a y e s - n o  experiment e E E belongs to E o if and only if 
e ~ e  • and e ~ e  • (briefly, e[[e• the only exceptions being e o and el, 
which we always admit in E 0. Then, the binary relations < and ~ are 
defined in E 0 by restriction of the relations < and ~ defined in E (this 
can also be done with ~ and ~ ,  which, however, do not interest us here); 
thus, we can consider the quotient set E 0 = Eo/~ .  We observe that E o is 
actually a subset of E ;  indeed, in order to get E o from E, every equiva- 
lence class [e]_ must either be entirely eliminated or entirely accepted in 
E 0 because of (3.2). Moreover, being trivially e E E o ~ e  • EE  o, for any 
x ~ E 0 , x •  then, x,~x -L and x •  (briefly xllx• with the only 
exceptions of 0 and I (which obviously belong to E0). 

We notice that, for any e E E, the condition ell e • is clearly equivalent 
to the following: 

Condition C. a pair (a , f l )  of states exists in S such that 

a ( e ) < l  and f l (e)>l  

Condition C is fulfilled by most  meaningful y e s - n o  experiments. For  
instance every question e such that at least one state ct with a(e)--1 and 
one state fl with fl(e)= 0 exists (this seems a reasonable requirement if we 
want e to yield significant physical information) satisfies it. 

We can now state the following proposition. 

Proposition 1. The restriction to E 0 of the mapping 7/: x E E --,x • ~ E 
is an orthocomplementat ion in E 0. 
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Proof. The join x V x  • exists in E 0 and coincides with I. Indeed, let 
I e , f ~ E  o and let f>~e,f>le• it follows a(f)~> i for any a E S .  Thus, f 

violates condition C, so that it must be equivalent to el, and [ f L =  I; 
hence our statement about x k / x  • follows immediately. 

Analogously, we can show that, for any x E Eo, the meet x / \ x  • exists 
in E o and coincides with 0. Thus, recalling (3.3) and (3.4), we see that 71 is 
an orthocomplementation in E o. �9 

4. T H E  O R T H O C O M P L E M E N T A ] ] O N  IN 

If one identifies E with the set of the propositions of quantum logic, 
this identification may cause some trouble, as we have already pointed out 
in the Introduction. Indeed, in quantum logic, E is a complete, orthomodu- 
lar, atomic lattice which obeys the covering law; then, some of these 
properties can be questioned (Mielnik, 1976) if interpreted in terms of 
properties of the yes -no  experiments contained in the elements of ~. 

On the other hand, together with some new suitable assumptions, our 
present knowledge of E can be used to deduce further information about 
~; we shall be particularly concerned here with the orthocomplementation 
in E. 

Firstly, we observe that the equivalence classes ~=[e0] ~ and I =  
[el]~(=[ei]_) are the least and the greatest elements of ~, respectively. 
Then, we can assume that for any a E E an orthocomplement a • E ~ exists 
(Janch, 1968) or we can give equivalent axioms (Piron, 1976); nevertheless, 
with this assumption one does not give a clear rule for which yes -no  
experiments actually belong to a • [It has been said by Jauch (1968) and 
in some early papers by Piron (1964) that a • contains all the yes -no  
experiments obtained by the ones in a by reversing the roles of yes and no. 
We have seen that this is a good recipe for obtaining an orthocomplement 
in E 0, but it is untenable in ~ because of Mielnik (1976).] Unfortunately, 
the procedure that we have followed in order to obtain a "natural" notion 
of orthocomplementation in E 0 cannot be repeated here because of a basic 
difference between E and E, i.e., because an analogue of (3.2) does not 
hold in E. In fact, let el,e2EE; then, e l s e  2 does not imply e l •  • 
Actually, some yes -no  experiments can be imagined (Mielnik, 1976) such 
that e l s e  2 but e l •  • (With the purpose of recovering an orthocom- 
plementation in ~ we could say that we eliminate the arrangements that 
cause trouble from E. However, we think that this solution is unsatisfac- 
tory, if some rule is not given to select the accepted yes -no  experiments.) 
To overcome these difficulties we put, for any e E E, S0(e)= Sl(e • [this 
will be called the certainly not domain of e; obviously, So(e )={aES:  
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a(e )  =0)]  and introduce the following assumptions: 

A x i o m  1. For any a G E ,  at least one e ` ' E E ,  e a E a  exists with maxi- 
mum "certainly not" domain, i.e., such that So(e`" ) is maximum, with 
respect to set inclusion, in the set (S0(e): e E a ) .  

A x i o m  2. For any a, b E E, let e`" E a, e b E b be yes -no  experiments 
with maximum "certainly not" domain; then 

ea eb So(e`')  So(eP 

A x i o m  3. Let a, b ~ E, a ~  b. Then some yes -no  experiments e "̀ E a, e b 
b with maximum "certainly not" domains exist such that e a ~ e b. 

Before going on we would like to comment on these axioms briefly. 
Axiom 1 and Axiom 2 are consistent with the usual formulation of 

quantum mechanics if we think of a ~ E as a subspace in the lattice ~ (%)  
of the closed subspaces of the Hilbert space % of the system; indeed, if we 
admit that for any a at least one experimental arrangement e`" exists which 
gives the yes outcome if and only if a is certainly true and the no outcome 
if and only if a is certainly false, then Axioms 1 and 2 immediately follow. 
[We remember that an assumption similar to Axiom 1 has been suggested 
by Mielnik (1969, 1974) by selecting in E only questions with maximal 
"certainly not" domain.] 

Axiom 3 essentially states [if one recalls (2.7)] that ~ and < coincide 
in E [<  is defined in E by (2.9)]. This coincidence is assumed (although 
without a clear distinction between E and ~) in some axiomatic ap- 
proaches to quantum logic (Beltrametti and Cassinelli, 1976), while it is 
derived as a consequence of suitable axioms in other approaches (Pool, 
1968a). (In this last reference the propositions of ~ are called events and 
the set of the events and the set of the states are chosen as primitive 
objects; whenever the events are interpreted as equivalence classes of 
yes -no  experiments the properties of the events are shared by a limited 
number of the questions which form them according to our previous 
discussion. We can call these privileged questions "observation proce- 
dures" and identify them with the yes -no  experiments with maximum 
"certainly not" domain whose existence is postulated by Axiom 1.) 

Coming back to our problem, we first notice that it follows from 
Axiom 1 that at least one element x`" -- [ è " ]_ such that the yes -no  experi- 
ments belonging to it have a maximum "certainly not" domain corre- 
sponds to each a ~ E. Moreover, x`" actually belongs to E 0; indeed, for any 
a~q~,  St(e,, ) is nonvoid and, for any a ~ I ,  So(e`" ) is also nonvoid, because 
of Axiom 2, so that any question e "̀ ~ x`" fulfills condition C of Section 2 
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whenever ~ a  v~I. Finally, it follows from Axiom 2 that, for any a,b E ~, 
the yes -no  experiments eaEa,  ebEb  with maximum "certainly not" 
domain are such that a = b ~ e a ~ e  b; hence, the element x~ -- [e,]_ is unique 
for any a E ~. 

Thus, by making use of Axiom 3, we get that the mapping which 
makes a E ~ correspond to x a E E is an isotonic injection of ~ into C 0. In 
the sequel, we will denote the range of this injection by Ee; then, recalling 
(2.7), we see that the mapping g: a @ E ~ x  a E Ee is an order isomorphism 
between E and Eec_E 0. 

For  any a @ ~, let us set a • = [ea • this proposition is easily seen to 
be uniquely determined in E. Now we can state the following proposition. 

Proposition 2. Let a ~ E; then, the mapping O: a E E--,a • E ~ is an 
orthocomplementation in ~. 

Proof. Let x 2_ be the orthocomplement in E o of any x E E o, and let 
a ~ , x a = [ e a ] E E ~ .  Then, x a X = [ e a ' L ~ E ~  so that E e is orthocomple- 
mented. Indeed, let us consider [e~X]~=a • ~ E ;  because of Axiom 1 an 
element ea~ E E exists whose "certainly not" domain is maximum. Let us 
suppose that e~ l~ea•  then, since e~•  1, ea~Ea • So(e~)DSo(ea • 
(here, D means _D with the exclusion of equality); hence, e, •177 = e a ~ e ~  • 
and ea •177 --ea~ea• • Thus, by making use of Axioms 2 and 3 we obtain 
So(e~)D So(e~ • while, by construction, S0(ea)--So(ea~• Therefore our 
assumption e~• • leads to a contradiction, hence ea~--~e~ • i.e., xa •  
[e~• E Ee, as stated. 

Thus, bearing in mind that the mapping g: a E E-~x~ E ~e is an order 
isomorphism, the statement of our proposition follows easily. �9 

To sum up the results achieved in this section, we can say that we 
have proved that an orthocomplementation in E can be given starting 
from the orthocomplementation defined in E 0, by making use of suitable 
assumptions. Moreover, we have implicitly obtained a rule to find the 
orthocomplement of any a ~ E, which in explicit terms sounds as follows: 
"Consider an a ~  ~; choose a yes -no  experiment e a in a which has a 
maximum "certainly not" domain; consider the yes -no  experiment ea -~ 
obtained by e~ by reversing the roles of the yes and no outcomes; consider 
the proposition a • E E such that ea • E a • then a • is the orthocomple- 
ment of a." We also observe that this orthocomplement is a compatible 
complement in the sense of Piton (1976). Of course, the above construction 
of the orthocomplement rests on the assumption that physics allows us to 
pick out a yes -no  experiment with maximum "certainly not" domain 
between the questions pertaining to any proposition in E. 
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